Double periodic viscous flows in infinite space-periodic pipes

Hugo Beirão da Veiga and Jiaqi Yang¹,

¹ School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, China

We study the motion of an incompressible fluid in an n + 1-dimensional infinite pipe Λ with an *L*-periodic shape in the *z*-axial direction. Below $x = (x_1, x_2, \dots, x_n)$, and $z = x_{n+1}$. Fluid motion is described here by the evolution Stokes or Navier-Stokes equations together with the non-slip boundary condition $\mathbf{v} = 0$. Let g(t) be a given real *T*-periodic function. We look for solutions $\mathbf{v}(x, z, t)$ with periodic total flux $\int_{\Sigma_z} v_z d\Sigma_z = g(t)$, where Σ_z denotes the cross section of the pipe at the level z. We look for solutions which are simultaneously *T*-periodic with respect to time and *L*-periodic with respect to z, for $z \in \mathbb{R}$ and $t \in \mathbb{R}$. We prove existence and uniqueness of the solution to the above problem. Furthermore, we show that in the significant case of a 3 - D symmetrical rotation pipe, \mathbf{v} is just the *full-developed* solution.

To avoid hiding our main ideas under technical calculations, the argument is presented through a sequence of steps. We start by considering the linear, stationary, Stokes problem. Then, by taking this case as a reference, we study the evolution Stokes equations. Finally, we end with the extension to the full Navier-Stokes equations.

References

[1] H. BEIRÃO DA VEIGA AND J. YANG, Double periodic viscous flows in infinite space-periodic pipes, arXiv:2103.05913.